

¹ Department of Computer Science, University of Toronto, ² Vector Institute for Artificial Intelligence, ³ Uber Advanced Technologies Group * - Equal contribution

Motivation

- Residual neural networks have rapidly pushed forward the state-of-the-art in multiple domains.
- Task performance continually increases as networks grow.
- Memory consumption is the primary bottleneck
- We present Reversible Residual Networks (RevNets) as a variant of ResNets which overcome the activation storage problem. RevNets have constant activation storage with no loss in
- performance.

Background

Residual Layers:

 $y = x + \mathcal{F}(x)$

- Residual layers are a standard component of neural networks.
- They appear in state-of-the-art architectures in vi-sion, natural language and audio tasks.
- They resist the problem of vanishing gradients.

Backpropagation:

- Nearly all modern neural nets are trained using backprop.
- Backprop requires storing activations in memory, leading to cost proportional to the number of layers in a network.
- In convolutional neural networks the bulk of memory is dedicated to activation storage, while parameter storage is relatively cheap.

Method

The reversible residual unit takes the following form:

$$y_1 = x_1 + \mathcal{F}(x_2)$$

 $y_2 = x_2 + \mathcal{G}(y_1)$
And can be reversed exactly:
 $x_2 = y_2 - \mathcal{G}(y_1)$

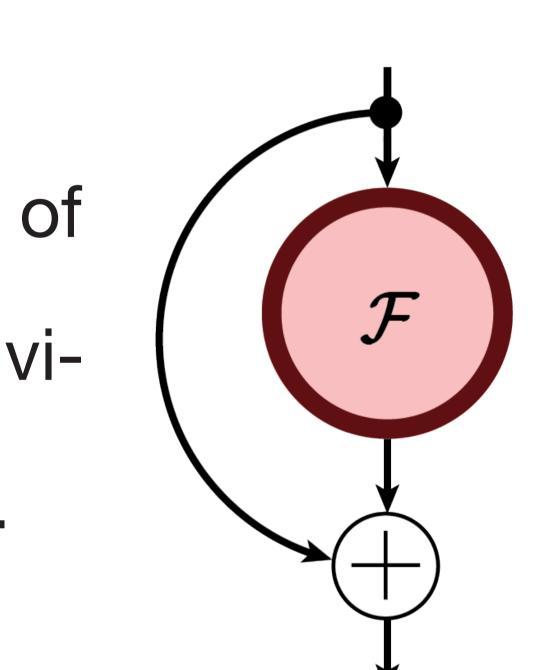
$$x_2 - y_2 - \mathcal{G}(y_1)$$

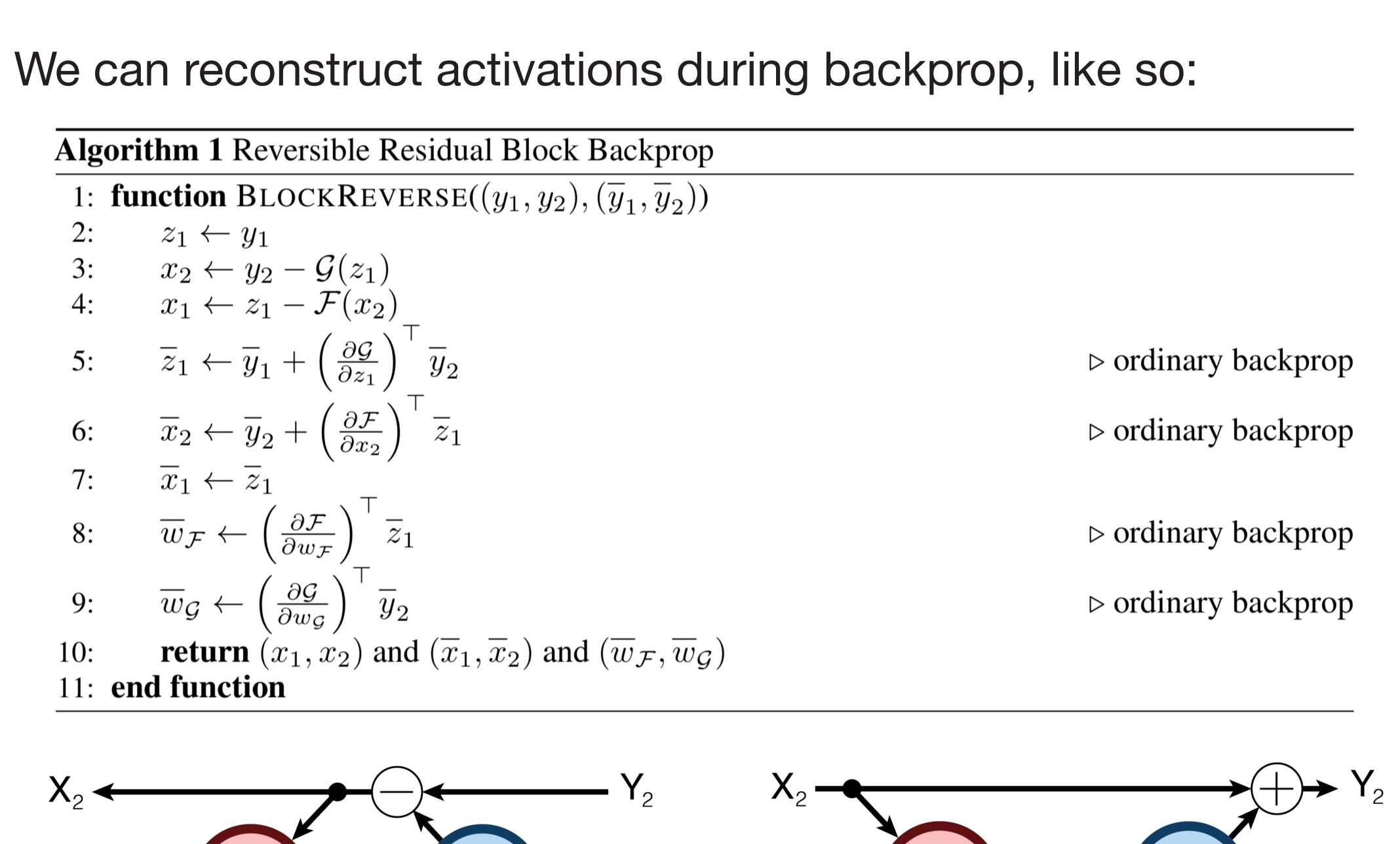
 $x_1 = y_1 - \mathcal{F}(x_2)$

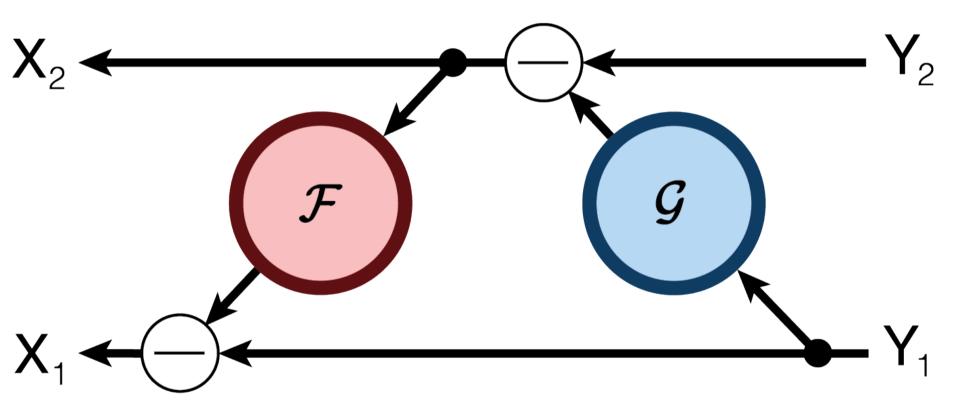
The Reversible Residual Network **Backpropagation without storing activations**

Aidan N. Gomez^{*,1} Mengye Ren^{*,1,2,3} Raquel Urtasun^{1,2,3} Roger B. Grosse^{1,2}

Method (cont.)







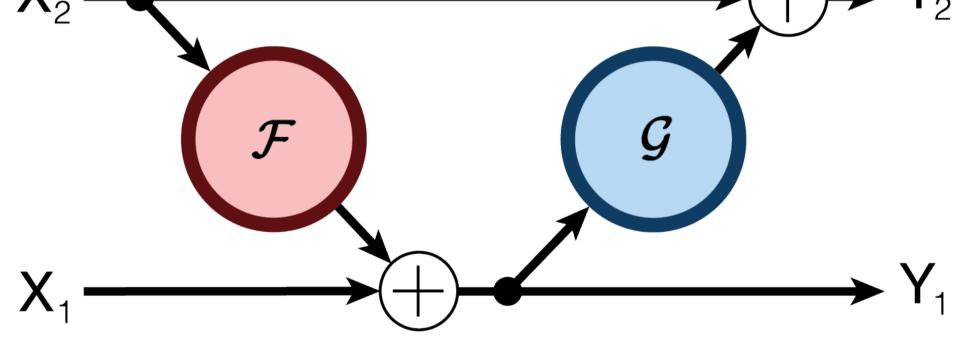
- In general, for a network with N layers: the forward pass requires ~N add-multiply ops while the backward requires ~2N.
- Therefore, the number of operations required for reversible backprop is approximately 4N, or roughly 33% more than ordinary backprop.

Technique	Spatial Complexity (Activations)	Computational Complexity
Naive	$\mathcal{O}(L)$	$\mathcal{O}(L)$
Checkpointing [22]	$\mathcal{O}(\sqrt{L})$	$\mathcal{O}(L)$
Recursive Checkpointing [5]	$\mathcal{O}(\log L)$	$\mathcal{O}(L \log L)$
Reversible Networks (Ours)	$\mathcal{O}(1)$	$\mathcal{O}(L)$

Our method has **constant** space complexity and linear computational time.

Task	Parameter Cost	Activation Cost
ResNet-101 RevNet-104	$\sim 178 \mathrm{MB} \\ \sim 180 \mathrm{MB}$	$\sim 5250 \mathrm{MB} \\ \sim 1440 \mathrm{MB}$

activations dominate storage requirements for a standard architecture; RevNets save 72.6%.

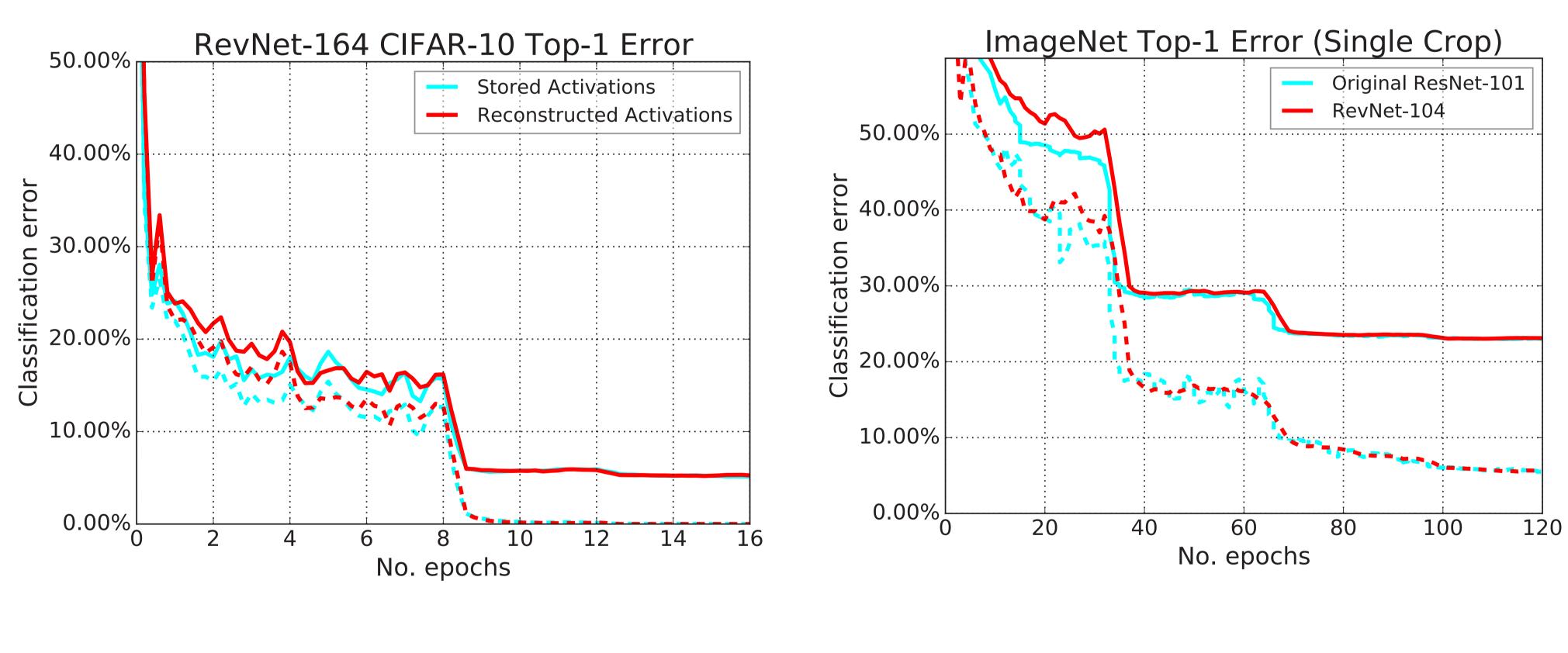


• For RevNet, the residual functions each must be recomputed.

Results

- Our RevNet architectures are chosen to roughly match computational depth and number of parameters.
- RevNets matched the performance of ResNets, while saving >70% memory requirements.
- As shown in figures below: no per-iteration slowdown was observed in RevNets.
- RevNets allow for 4x larger batch size on ImageNet.
- We were able to fit a 600+ layer RevNet on one GPU vs. 100 layer for ResNet.

Architactura	CIFAR	CIFAR-10 [17]		100 [17]	ImagaNat	
Architecture	ResNet	RevNet	ResNet	RevNet	ImageNet	
32 (38)	7.14%	7.24%	29.95%	28.96%	ResNet-101	RevNet-104
110 164	5.74% 5.24%	5.76% 5.17%	26.44% 23.37%	25.40% 23.69%	23.01%	23.10%



Reconstruction Error:

- es error in floating point.
- errors.

Reconstructing activations introduc-

• Extremely deep networks may suffer from the accumulation of these

• Figure right: we measure the empirical error in our deepest network and

observe that it remains extremely small throughout training. • Despite numerical error, training efficiency and task performance are nearly indistinguishable.

